

Topochemical Synthesis of Europium Molybdenum Oxynitride Pyrochlores

Minghui Yang, † Judith Oró-Solé, † Amparo Fuertes. **, ‡ and J. Paul Attfield*,

[†]CSEC and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom, and [‡]Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Received June 21, 2010

Materials based on stoichiometric mixed metal oxynitrides show many important properties, 1 for example, CaTaO₂N-LaTaON₂ red-yellow pigments,² the lithium battery material Li_{7.9}MnN_{3.2}O_{1.6}, BaTaO₂N, which has a high dielectric constant⁴ and photocatalytic activity, 5 and the CMR (colossal magnetoresistance) materials $EuNbO_2N^6$ and $EuWON_2$. 7,8 Such phases can be difficult to synthesize, as the high temperatures required to activate cation diffusion also lead to nitrogen loss. This can be overcome through the use of high pressure, for example, to synthesize $RZrO_2N$ perovskites (R = Pr, Ndand Sm) directly from R₂O₃ and Zr₂ON₂, but a more common strategy is to heat an oxide precursor containing the metals in the desired ratio under a flow of ammonia gas (ammonolysis). This has been used to prepare many mixed metal oxynitrides and is usually accompanied by structural rearrangement, for example, La₂Zr₂O₇ pyrochlore to La-ZrO₂N perovskite, ¹⁰ scheelite types RTaO₄ to R₂Ta₂O₅N₂ pyrochlores for R = Nd, Sm, Gd, Dy, 11 and EuMO₄ scheelites to EuMO₂N perovskites for M = Nb and Ta.⁶ $R_2W_2O_9$ are ammonolyzed to RWO₃N scheelites for R = Pr, Nd, Sm, Gd, Dy, 12 but Eu₂W₂O₉ undergoes two

1) Fuertes, A. Dalton Trans. 2010, 39, 5942-5948.

- (2) Jansen, M.; Letschert, H. P. *Nature* 2000, 404, 980–982.
 (3) Cabana, J.; Rousse, G.; Fuertes, A.; Palacín, M. R. *J. Mater.* Chem. 2003, 13, 2402-2404.
- Kim, Y.; Woodward, P. M.; Baba-Kishi, K. Z.; Tai, C. W. Chem.
- Mater. 2004, 16, 1267–1276. (5) Highashi, M.; Abe, R.; Takata, T.; Domen, K. Chem. Mater. 2009, 21, 1543–1549.
- Jorge, A. B.; Oró-Solé, J.; Bea, A. M.; Mufti, N.; Palstra, T. T. M.; Rodgers, J. A.; Attfield, J. P.; Fuertes, A. J. Am. Chem. Soc. 2008, 130, 12572–12573.
- (7) Kusmartseva, A.; Yang, M.; Oró-Solé, J.; Jorge, A. B.; Fuertes, A.; Attfield, J. P. Appl. Phys. Lett. 2009, 95, 022110. Yang, M.; Oró-Solé, J.; Kusmartseva, A.; Fuertes, A.; Attfield,
- J. P. J. Am. Chem. Soc. **2010**, 132, 4822–4829. (9) Yang, M.; Rodgers, J. A.; Middler, L. C.; Oró-Solé, J.; Jorge, A. B.;
- Fuertes, A.; Attfield, J. P. *Inorg. Chem.* **2009**, *48*, 11498–11500. (10) Clarke, S. J.; Guinot, B. P.; Michie, C. W.; Calmont, M. J. C.;
- Rosseinsky, M. J. Chem. Mater. 2002, 14, 288-294.
- (11) Maillard, P.; Tessier, F.; Orhan, E.; Cheviré, F.; Marchand, R. Chem. Mater. 2005, 17, 152-156.
- Antoine, P.; Marchand, R.; Laurent, Y. Rev. Int. Hautes Temp. Refract. Fr. 1987, 24, 43-46. Cheviré, F.; Tessier, F.; Marchand, R. Mater. Res. Bull. 2004, 39, 1091-1101.

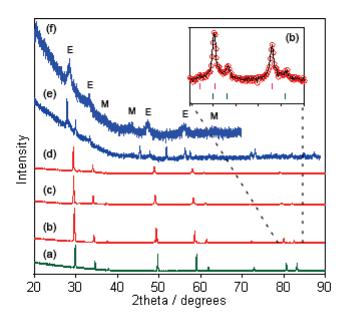


Figure 1. Powder X-ray diffraction patterns of Eu₂Mo₂O₇, (a) as-synthesized and after ammonolysis for 12 h at (b) 500, (c) 600, and (d) 630 °C. EuMoO₄ ammonolyzed at 600 °C (e) shows slight decomposition after 3 h, and (f) is fully decomposed to a mixture of poorly crystalline Eu₂O₃ (E) and γ -Mo₂N (M) after 24 h. The inset expansion of (b) for 2θ 79-84° shows the fitted peaks from Eu₂Mo₂O₇ (lower markers) and Eu₂Mo₂O₅N₂ (upper markers) pyrochlore phases.

structural rearrangements to form the perovskite Eu-WON₂ via the scheelite EuWO₄.8 Reported transformations of $R_2Mo_2O_7$ pyrochlores ($R=Sm\ and\ Y$) to isostructural $Sm_2Mo_2O_{3.83}N_{3.17}^{13}$ and $Y_2Mo_2O_{4.5}N_{2.5}^{14}$ are thus a rare example of structure retention, but the necessity of structural control and the ranges of anion content were not explored. Following discoveries of CMR in EuNbO₂N and EuWON₂, 6-8 we have explored the synthesis of possible EuMo(O,N)₃ perovskites through ammonolysis of two precusors with different structures and oxidation state distributions, Eu³⁺₂Mo⁴⁺₂O₇ and Eu²⁺ Mo⁶⁺O₄. ¹⁵ This has led to the discovery of unambiguous structural control in mixed metal oxynitride synthesis, as we show that anion-deficient pyrochlores based on Eu₂Mo₂O₅N₂ are obtained from ammonolysis of the pyrochlore Eu₂-Mo₂O₇, but not from the scheelite precursor EuMoO₄ under identical conditions. R₂Mo₂O₅N₂ pyochlores could be excellent materials to explore the ground states of highly frustrated S = 1/2 magnets.

Ammonolysis of pyrochlore type Eu₂Mo₂O₇ at 500– 630 °C¹⁶ resulted in the formation of a pyrochlore type oxynitride, as shown in Figure 1 and Table 1, although prolonged treatment resulted in decomposition to Eu₂O₃ and γ-Mo₂N. The cubic cell parameter and nitrogen

^{*}Corresponding author. E-mail: amparo.fuertes@icmab.es (A.F.); j.p.attfield@ed.ac.uk (J.P.A.).

⁽¹³⁾ Veith, G. M.; Greenblatt, M.; Croft, M.; Goodenough, J. B. Mater. Res. Bull. 2001, 36, 1521-1530.

Martinez-Lope, M. J.; Casais, M. T.; Alonso, J. A. Z. Naturforsch. **2006**, *61B*, 164–169.

⁽¹⁵⁾ McCarthy, G. J. Mater. Res. Bull. 1971, 6, 31-39.

Table 1. Cell Parameters, Analyzed Compositions, and Average Mo Oxidation States +n for Eu₂Mo₂O_{5-x}N_{2+x- δ} Samples Prepared by Ammonolysis of Various Masses of Eu₂Mo₂O₇ a for 12 h at 500–630 °C with a Flow Rate of 250 cm³/min

T (°C)	mass (mg)	a (Å)	Х	δ	δ/x	n
500^{b}	200	10.3859(1)				4
		10.4479(2)	0.08			5.04
550	200	10.4532(1)	0.40	0.08	0.20	5.08
550	85	10.4917(1)	1.21	0.11	0.09	5.44
600	200	10.4979(2)	1.13	0.21	0.19	5.25
615	200	10.5070(2)	1.25	0.19	0.15	5.35
630	100	10.5386(4)	1.74	0.29	0.17	5.43

^aThe Eu₂Mo₂O₇ precursor has a = 10.3832(1) Å. ^b Fitting of X-ray diffraction data (Figure 1b) shows that this sample is a mixture of 20(1)% $Eu_2Mo_2O_7$ (upper row) and 80% $Eu_2Mo_2O_{5-x}N_{2+x-\delta}$, (lower row) pyrochlores. The N excess of the latter phase x is estimated from the bulk analyzed content of 1.66 N atoms/formula unit, assuming $\delta = 0$ and that the Eu₂Mo₂O₇ phase has negligible nitrogen content.

content¹⁷ of the oxynitride phase increase with ammonolysis temperature and surface area. The Fd3m pyrochlore superstructure of the fluorite structural arrangement is confirmed by observation of the (331) X-ray peak at $2\theta \approx$ 37° (Figure 1) and by electron diffraction (see the Supporting Information). Two pyrochlore phases were observed in the sample ammonolyzed at 500 °C (see Figure 1b). One has a lattice parameter that is very close to that of Eu₂Mo₂O₇, although the small shift indicates that a very limited nitrogen substitution may occur. The other pyrochlore has a composition close to Eu₂Mo₂O₅N₂, demonstrating that Eu₂Mo₂O₇ is initially converted to a distinct phase that is analogous to R₂Ta₂O₅N₂ phases. 11 There is no miscibility (solid solution) between the pyrochlores Eu₂Mo₂O₇ and Eu₂Mo₂O₅N₂ although they are isostructural (Figure 2a), showing that nitride only stabilizes high Mo oxidation states $(\geq +5)$ in this structure type.

The single-phase oxynitride pyrochlores have nitrogen contents of 2.3-3.5 atoms per formula unit showing that further nitridation of Eu₂Mo₂O₅N₂ occurs. Two facile com-

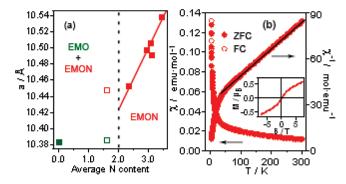


Figure 2. Results for $Eu_2Mo_2O_{5-x}N_{2+x-\delta}$. (a) Plot of cell parameters against average N content for samples in Table 1 showing the miscibility gap (two phase region) between the Eu₂Mo₂O₇ (EMO) and Eu₂Mo₂- $O_{5-x}N_{2+x-\delta}(EMON)$ pyrochlores. Both phases (open symbols) are observed in a sample with average N content of 1.66. (b) Zero-field-cooled (ZFC) and field-cooled (FC) ac magnetic susceptibilities and the inverse ZFC susceptibility of Eu₂Mo₂O_{3,75}N_{3.06}, using a 0.01 T magnetic field. The paramagnetic moment derived from the linear fit is 6.77 $\mu_B/f.u.$ The inset shows the magnetization-field loop at 5 K.

pensation mechanisms are available; oxidation of Mo⁵⁺ to Mo⁶⁺ and the formation of anion vacancies. Hence these phases are formulated $Eu_2Mo_2O_{5-x}N_{2+x-\delta}$ and the substitutional (x) and anion deficiency (δ) variables shown in Table 1 were determined by performing nitrogen and thermo-gravimetric analyses. The possible range of anion deficiency is $0 < \delta < x/3$, where $\delta = 0$ corresponds to maximum oxidation, i.e., $\operatorname{Eu_2Mo}^{(5+x/2)+} {}_2\operatorname{O}_{5-x}\operatorname{N}_{2+x}$ up a limit of x=2for Mo⁶⁺, whereas $\delta = x/3$ describes vacancy formation at a constant oxidation state, i.e., $Eu_2Mo^{5+}_2O_{5-x}N_{2+2x/3}$. Four of the analyzed samples are halfway between these limits, with $\delta/x = 0.15 - 0.20$, and their lattice parameters show a linear correlation with nitrogen content (Figure 2a). A high-surface-area sample ammonolyzed at low temperature (550 °C) has a significantly lower $\delta/x = 0.09$, and the lattice parameter does not follow the trend of the others. This shows that Mo oxidation state and anion vacancy formation can be varied independently in the Eu₂Mo₂O_{5-x}- $N_{2+x-\delta}$ pyrochlores. Reduction of Eu³⁺ to Eu²⁺ is also possible under ammonolysis conditions, but comparison of the refined Eu-O/N distance of 2.40 Å in the crystal structure of Eu₂Mo₂O_{3.87}N_{2.92} (see the Supporting Information) to the predicted values of 2.46 and 2.65 Å from the respective ionic radii of Eu³⁺ and Eu²⁺ shows that no substantial reduction of Eu³⁺ occurs. Furthermore, these phases have a very similar structure and composition to Y₂Mo₂O_{4.5}N_{2.5}, where no reduction of yttrium is likely.

The Eu₂Mo₂O_{5-x}N_{2+x- δ} phases have Mo oxidation states n = 5.0-5.5, so 0.5-1.0 d electrons are present per Mo. Sintered pellets are semiconducting with room temperature resistivities of $1-10 \Omega$ cm and activation energies of 60-80 meV. The high temperature Curie-Weiss behavior (Figure 2b) shows that strong antiferromagnetic interactions are present (Weiss constant $\theta = -183$ K), in contrast to Eu₂Mo₂O₇ which is metallic and orders ferromagnetically at 56 K.18 Ferromagnetic correlations

⁽¹⁶⁾ Eu₂Mo₂O₇ and EuMoO₄ precursors were synthesised from Eu₂O₃, MoO₃, MoO₂, and Mo (all 99.99%, Aldrich) in stoichiometric ratios. Eu₂O₃ and MoO₃ were preheated at 800 and 350 °C, respectively. Eu₂Mo₂O₇: a pellet of Eu₂O₃ and MoO₂, sandwiched between two pieces of Mo foil and covered by Mo powder, was heated in an alumina boat at 1450 °C for 24 h under flowing argon. EuMoO₄: a pellet of Eu₂O₃, MoO₃, and Mo was sealed in an evacuated quartz tube and heated to 600 °C for 24 h and 1050 °C for 36 h. Both black, air-stable solid products were phase pure by powder X-ray diffraction; 85–300 mg of the precursors were placed in an alumina boat (sample surface area was altered by spreading different masses over the same $0.5 \times 1.0 \,\mathrm{cm}^2$ area) within a tube furnace and heated at temperatures of 500-1000 °C for times of 3-48 h and then slow cooled to room temperature under ammonia gas (99.999%, BOC) with flow rates of 20-250 cm³/min. Pellets for resistivity measurements were heated at 500 °C for 3 h under a 250 cm³/min flow of ammonia.

⁽¹⁷⁾ Powder X-ray diffraction patterns were recorded using a θ -2 θ diffractometer with monochromatic CuKal radiation. Data were taken in the range $2\theta = 10-90^{\circ}$ at a 0.007° step size, with 3 s count times. Electron diffraction micrographs were obtained in a JEOL 1210 transmission electron microscope operating at 120 KV. Nitrogen contents were measured as N_2 gas by a combustion method using a Carlo Erba CHNS analyzer. An average from three analyses of approximately 3 mg material was taken for each sample. Thermogravimetric analysis was performed using a TG/DSC Netzsch STA 449 F1 Jupiter while heating up to 1000 °C under flowing O₂, resulting in oxidation to Eu_2O_3 and $\tilde{MoO_3}$ with loss of N_2 gas. Magnetization and four-probe resistivity measurements at 2-300 K were obtained using Quantum Design PPMS and MPMS instruments.

⁽¹⁸⁾ Kézsmárki, I.; Hanasaki, N.; Watanabe, K.; Iguchi, S.; Taguchi, Y.; Miyasaka, S.; Tokura, Y. *Phys. Rev. B* **2006**, *73*, 125122. Hanasaki, N.; Watanabe, K.; Ohtsuka, T.; Kézsmárki, I.; Iguchi, S.; Miyasaka, S.; Tokura, Y. Phys. Rev. Lett. 2007, 99, 086401.

are seen at low temperatures but no long-range order is apparent down to 2 K, evidencing considerable magnetic frustration. Hence $R_2Mo_2O_5N_2$ pyochlores could be excellent materials to explore the ground states of highly frustrated S=1/2 magnets.

A notable result is that ammonolysis of scheelite type EuMoO₄ under the same conditions results in direct decomposition (see Figure 1e, f) without a pyrochlore, perovskite, or any other oxynitride phase being formed. This is surprising, as other scheelite oxides are converted to pyrochlore or perovskite oxynitrides as noted above. This demonstrates that the $Eu_2Mo_2O_{5-x}N_{2+x-\delta}$ phases are only accessible from the Eu₂Mo₂O₇ precursor and hence the structural relationship is necessary, i.e., the ammonolysis reaction is topochemical. It is likely that the reaction is also topotactic, but in situ study of individual crystal transformations would be needed to confirm this. A probable explanation for the topochemistry/topotacticity is that these oxynitrides are thermodynamically unstable with respect to the formation of low-valent binary Mo nitrides such as γ-Mo₂N, and are only formed as metastable intermediates during the ammonolysis process.

In conclusion, a metastable anion-deficient pyrochlore phase $\mathrm{Eu_2Mo_2O_{5-x}N_{2+x-\delta}}$ ($0 < x < 1.74, 0 < \delta < 0.29$) is obtained from ammonolysis of $\mathrm{Eu_2Mo_2O_7}$ but not from $\mathrm{EuMoO_4}$. This demonstrates structural control of reactivity, however $\mathrm{Eu_2Mo_2O_7}$ and $\mathrm{Eu_2Mo_2O_5N_2}$ do not form solid solutions despite their structural relationship. This suggests that other distinct new stoichiometric oxynitrides may be discovered from ammonolysis of mixed metal oxide precursors with appropriate structures. $\mathrm{R_2Mo_2O_5N_2}$ phases may show novel magnetic ground states resulting from frustration within a pyrochlore lattice of S = 1/2 spins.

Acknowledgment. This work was supported by the Ministerio de Ciencia e Innovación, Spain (grants MAT2008-04587 and PR2008-0164), and the Royal Society, EPSRC, EaStCHEM, and the Leverhulme Trust, U.K..

Supporting Information Available: X-ray and electron diffraction and conductivity results for $Eu_2Mo_2O_{5-x}N_{2+x-\delta}$ (PDF); refinements in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.